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Systematic weakly nonlinear analysis of interfacial instabilities in Hele-Shaw flows
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We develop a systematic method to derive all orders of mode couplings in a weakly nonlinear approach to
the dynamics of the interface between two immiscible viscous fluids in a Hele-Shaw cell. The method is
completely general: it applies to arbitrary geometry and driving. Here we apply it to the channel geometry
driven by gravity and pressure. The finite radius of convergence of the mode-coupling expansion is found.
Calculation up to third-order couplings is done, which is necessary to account for the time-dependent Saffman-
Taylor finger solution and the case of zero viscosity contrast. The explicit results provide relevant analytical
information about the role that the viscosity contrast and the surface tension play in the dynamics of the
system. We finally check the quantitative validity of different orders of approximation and a resummation
scheme against a physically relevant, exact time-dependent solution. The agreement between the low-order
approximations and the exact solution is excellent within the radius of convergence, and is even reasonably
good beyond this radius.
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I. INTRODUCTION

The morphological instability of fluid interfaces in Hele
Shaw flows@1,2# has become a paradigm of interfacial pa
tern formation in nonequilibrium systems@3–5#. As opposed
to the most commonly studied ‘‘bulk’’ pattern forming sy
tems@6#, the inherent difficulties of free-boundary problem
associated with interfacial growth makes the latter even m
elusive to analytical treatment. As a prototype of interfac
instabilities in diffusion-limited growth problems~including,
for instance, dendritic growth, solidification of mixture
chemical electrodeposition, flame propagation, etc.! the
Saffman-Taylor problem@7# is a relatively simple case, bot
theoretically and experimentally, well suited for gaining i
sight into generic dynamical features in the broad contex
nonlinear interface phenomena.

The intrinsic difficulty of free-boundary problems
manifest in the fact that the interface dynamics is hig
nonlocal. Furthermore, the nature of the instability~except in
some cases, such as in directional solidification of bin
alloys! usually produces nonsaturated growth, which inev
bly results in highly nonlinear dynamics. In bulk instabilitie
when the control parameter is near the threshold, the tr
tional weakly nonlinear techniques lead to a universal
scription of patterns in terms of amplitude equations ba
on center manifold reduction@6,8#. These techniques, how
ever, are not so useful for interfacial problems in which no
linearities do not saturate the growth. This is the case,
instance, of viscous fingering. In the case of the chan
geometry~Saffman-Taylor problem! @1,7# the interface resta
bilizes in a nontrivial morphology~the Saffman-Taylor fin-
ger!, which keeps growing at a finite rate. For circular geo
etries @9,10# the patterns do not reach an equivalent ste
state and the interplay of tip-splitting events and screen
effects may result in a variety of complicated morphologi
In these problems all the weakly nonlinear techniques ap
only to a transient in the early nonlinear regime. Nevert
less, compared to the more traditional ones@6,8#, the weakly
nonlinear analysis developed in this paper is not restricte
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situations near the instability threshold, where a separatio
scales is exploited. Instead, we expand on the amplitude
the whole spectrum of modes.

In the traditional Saffman-Taylor problem~channel geom-
etry! the pressure- and gravity-driven instabilities can be f
mally mapped into each other in the appropriate refere
frames, so there is really no different interface dynamics
the two physical situations. The problem, then, contains t
independent dimensionless parameters, namely, a dimen
less surface tensionB and the viscosity contrast or Atwoo
ratio A @11#. In the radial geometry, though, there is no su
formal mapping. The injection and the centrifugal forcing a
not equivalent and three independent parameters mus
considered.

The situation most commonly studied in the literature
the high viscosity contrast limit,A51, where one of the two
fluids is nonviscous@1# ~typically air displacing a viscous
fluid!. The singular perturbation character of the surface t
sion B has received most of the attention as being resp
sible for the subtle mechanism ofsteady-state selection,
namely, the fact that surface tension ‘‘selects’’ a sing
finger solution out of a continuum of solutions forB50
@12–14#. More recently, the crucial role of surface tension
thedynamicsof fingering patterns has been pointed out. Ta
veer and co-workers@15–17# have shown that the exac
nonsingular time-dependent solutions known for the c
with B50 may differ significantly from the correspondin
solutions withB→01 after a time, which is of order one
(B0). In practice, this implies that exact solutions of th
problem withB50 ~including those with no finite time sin
gularities! may lead to completely incorrect asymptotic b
havior as compared to the regularized solutions withB!1.
A careful analysis of these questions may be found in R
@18#. Notice, however, that such an analysis is restricted
smallB, while in many cases~for instance, for fingers emerg
ing naturally from the linear instability, with the characteri
tic length scale of the linearly most unstable mode! the ef-
fective dimensionless surface tension is necessarilyB;1.
Understanding the dynamics of finger competition in typic
©2001 The American Physical Society02-1
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experimental conditions thus requires considering relativ
large values ofB, for which the perturbative techniques o
@15–17# fail.

On the other hand, an important role of viscosity contr
A in the dynamics of finger competition has been obser
both numerically @11,19# and experimentally@20–22#. A
careful characterization of the evolution of the interface h
shown that forA50 the finger competition process is ine
fective, and that the system does not approach the u
single-finger Saffman-Taylor attractor@23,24#. Although the
nature or existence of other attractors is still an open qu
tion, it seems that the basin of attraction of the Saffm
Taylor solution does depend onA, and is particularly sensi
tive to A in the neighborhood ofA.1. In any case, it is clea
that the viscosity contrast plays also a crucial role in
highly nonlinear regime, and that tuningA in its full range is
necessary to elucidate some of the important questions
remain unanswered.

Finally, an interesting interplay betweenB andA in con-
nection with the selection problem is apparent in that, des
the fact that single-finger stationary solutions of any wid
do exist forB50 regardless of viscosity contrastA, the only
single-finger time-dependent solution of theA51 (B50)
problem, which is also a solution for any viscosity contra
A, is the one that fills one half of the channel@25,26#, which
is precisely the solution selected by surface tension in
limit B→0. Whether deeper consequences concerning
selection problem can be drawn from this fact is also an o
question of considerable interest.

In order to gain analytical insight into these dynamic
questions we propose here a systematic weakly nonlin
expansion of the problem of viscous fingering in Hele-Sh
flows, applicable in all traditional setups and the most rec
one of rotating flows@27#. The basic reason is to be able
extract information that is nonperturbative in any of the tw
basic parameters, which are taken as completely arbitr
The expansion parameter will be basically the mode am
tudes.

In this paper we will focus on unstable stratified flows, f
which the approach is necessarily restricted to the early e
lution of the interface. Although some of the nontrivial d
namical effects mentioned above are associated with
highly nonlinear regime, it may be useful to know within
controlled approximation to what extent these or other
fects already show up in the early stages of nonlinear m
coupling.

For the stable stratified case the weakly nonlinear anal
is obviously valid for long times since all mode amplitud
decay with time. Although this configuration may see
trivial, this is not the case in some situations, for instan
when some external source systematically drives the in
face out of its equilibrium state. An example of this is t
presence of noise sources, such as the quenched noise
ciated with a porous medium@28#. In a study of the long-
wavelength, low-frequency scaling properties of the interfa
fluctuations, knowledge of the lowest-order nonlinear ter
and their dependence on parameters such as viscosity
trast is crucial. In this context the weakly nonlinear expa
sion is the starting point of any renormalization group ana
01630
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sis of the relevant terms and of the fixed points of t
problem. This line of research is clearly beyond the scope
this paper and will not be pursued here.

The case of centrifugal forcing of Hele-Shaw flows@29#
can also be addressed using our formulation. The experim
tal study of rotating Hele-Shaw flows has revealed a r
variety of new phenomena@27,30,31#. From a theoretical
point of view, new classes of exact solutions withB50 have
been found@32,33#. The role of rotation in the possible sup
pression of finite time cusp singularities in the absence
surface tension has been discussed in@34#. From an experi-
mental point of view, important differences in pattern mo
phology and new dynamical effects have been found for l
viscosity contrasts@35#. It thus seems important to have th
case included in the weakly nonlinear formalism. The ana
sis has already been carried out@36# and will be discussed in
detail in a separate paper.

The first weakly nonlinear analysis of a viscous fingeri
problem was carried out by Guo, Hong, and Kurtze@37,38#,
who studied an intrinsically nonlinear, surface-tensio
driven instability. The basic ideas developed here were in
duced by Miranda and Widom@39,40# for the standard vis-
cous fingering problem both in channel and circu
geometry~with fluid injection!. The present work is in par
an extension of those previous contributions in several dir
tions, and in part a detailed study of selected particular s
ations to assess the validity and limitations of the approa

First of all, we provide a fully systematic methodolog
that may be carried out to arbitrary order. We apply th
technique to derive an equation for the interface evolution
real space up to cubic nonlinearities. When this equatio
expressed in Fourier space it reproduces the second-
third-order mode couplings obtained by Miranda and Wido
in Ref. @39#. These results are applied to the study of t
evolution of the Saffman-Taylor finger of width one-half—
configuration with up-down symmetry where the second
der is not present. It is implicit in our approach how furth
orders can be computed due to the systematics of
method.

In addition, our study extends the earlier results
Miranda and Widom@39,40# with the discussion of the con
vergence of the weakly nonlinear analysis. We find the
plicit exact criterion to ensure uniform convergence of t
series. Beyond this condition the series is asymptotic,
different resummation schemes are also explored. The dif
ent orders of approximation, including possible resumm
tions, are carefully compared with exact solutions for t
case of a single-finger configuration. We find that, in so
cases, agreement even at relatively low orders is quite
markable.

The layout of the rest of the paper is as follows. In Sec
we introduce the formalism. Section III deals with the de
vation of the weakly nonlinear equations and their appli
tion to Hele-Shaw flows in channel geometry. Section
presents a numerical analysis of exact and approximate
lutions. The main results and conclusions are summarize
Sec. V.
2-2
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II. VORTEX SHEET FORMALISM

Let us first consider the Hele-Shaw problem in the ch
nel geometry. We consider fluid 1~viscositym1, densityr1)
below fluid 2 (m2 ,r2) ~Fig. 1!. The ẑ axis is perpendicular
to the cell. A velocityV` is imposed at infinity in theŷ
direction. Gravity points from fluid 2 to fluid 1. The width o
the cell is L, the gap between plates isb, and the surface
tension between the fluids iss.

The equations of motion for the interface and the bou
ary conditions are well known@7#. Here we will use the
formulation of Tryggvason and Aref@11#. We introduce the
velocity UW 5(uW 11uW 2)/2 as the mean of the two limiting val
ues of the velocities from both sides of the interface (uW 1 ,uW 2)
at a given point. This velocityUW can be expressed in terms
the vortex sheet distributiong at the interface as

UW ~s,t !5
1

2p
PE ẑ3@rW~s,t !2rW~s8,t !#

urW~s,t !2rW~s8,t !u2
g~s8,t !ds8,

~2.1!

where

g52A~UW "ŝ!12Cŷ"ŝ12Dks , ~2.2!

wheres is the arclength,k is the curvature, and

A5
m22m1

m21m1
, C5

gb2~r22r1!

12~m21m1!
1AV` ,

D5
sb2

12~m21m1!
, g5~uW 12uW 2!• ŝ. ~2.3!

For the purposes of this work it is convenient to rewrite the
equations in terms of the interface heighth(x) following
@41#. The equations read

UW ~x,t !5
1

2p
PE

2`

1`
„h~x8!2h~x!,x2x8…

~x2x8!21@h~x8!2h~x!#2
g̃~x8!dx8,

~2.4!

FIG. 1. Sketch of the Hele-Shaw cell in channel geometry
01630
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g̃52Dkx12Chx12AUW •~1,hx!, ~2.5!

where

g̃5gA11hx
2, k5

hxx

~11hx
2!3/2

. ~2.6!

The dependence ofh andg̃ on time is not written explicitly.
To complete the definition of the moving boundary pro

lem the continuity of the normal velocity at the interface
required. This means that the velocity in they direction,
dh/dt, projected along the normal direction is equal to t
normal component of the average velocity of the interfa
UW •n̂,

dh

dt
5Uŷ2Ux̂hx . ~2.7!

In Sec. III we will consider the interface in the comovin
frame (h̄50) and will look for the equation of evolution o
h(x,t).

III. SYSTEMATIC WEAKLY NONLINEAR ANALYSIS—
CHANNEL GEOMETRY

Our goal in this section is to introduce a systema
method to derive an evolution equation of the interface
real space, to a given order in nonlinear couplings in
channel geometry. The different orders of mode couplin
will be ordered as powers of a ‘‘book-keeping’’ parameter«
to be defined below. The evolution of the interface will th
take the form

dh

dt
5F@h#1«G@h#1«2I @h#1•••, ~3.1!

whereF@h#,G@h#, etc. are nonlocal operators on the fun
tion h(x,t), including nonlinearities of ordern11 in the
term of order«n. The small parameter« is defined as the
ratio of two lengths,«5w/L. We takew as a measure of the
characteristic scale of variation of the interfaceh(x), while L
is either the width of the cell or, alternatively, the charact
istic scale of variation in thex direction. The weakly nonlin-
ear regime is defined by the conditionw!L.

The order«0 in Eq. ~3.1! corresponds to the linearize
equation. The order«1, when written in Fourier space, cor
responds to the result of Miranda and Widom@39#. Here we
will perform the explicit calculation to one order higher in«
~up to I @h#), which is the leading nonlinear contribution i
several important cases, such as those discussed in Sec.

A. Dimensionless equations, expansion and convergence

We scale the interface height withw, the coordinatex
with L, and the time withL/C, where the velocityC has been
defined in Eq.~2.3!.

The Eqs.~2.4!, ~2.5!, ~2.6!, and~2.7! become
2-3
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UW ~x,t !

5
1

2p
PE

2`

1`
„«@h~x8!2h~x!#,x2x8…

~x2x8!2H 11«2Fh~x8!2h~x!

x82x
G 2J g̃~x8!dx8,

~3.2!

g̃52Bkx12«hx12AUW •~1,«hx!, ~3.3!

where

B5
sb2

12CL2~m11m2!
, k5

«hxx

~11«2hx
2!3/2

, ~3.4!

and

dh

dt
5

1

«
Uŷ2Ux̂hx . ~3.5!

The starting point of our approach is an expansion ofUW ,
g̃, and k in powers of «. Notice that the term@h(x8)
2h(x)#2/@x82x#2 between curly brackets in Eq.~3.2! is
bounded provided thathx does not diverge. Equation~3.5!
thus takes the form

dh

dt
5

1

«
Uŷ

(0)
1Uŷ

(1)
2hxUx̂

(0)
1«~Uŷ

(2)
2hxUx̂

(1)
!1•••.

~3.6!

Before pursuing the calculation in detail, let us point o
that the« expansion in Eq.~3.6! has a finite radius of con
vergence. This is guaranteed by the properties of unifo
convergence of both the expansion of the inverse of the
nominator in Eq.~3.2! and the curvature. These properti
allow us to commute the expansion with the integral in E
~3.2! and yield a convergent series of the form~3.6!. The
radius of convergence of the expansion in Eq.~3.2! is given
by the condition«2@h(x8)2h(x)#2/@x82x#2,1, while the
convergence of the curvature expansion is ensured by
condition«2hx

2,1. By virtue of the mean value theorem,
necessary and sufficient condition for«2@h(x8)
2h(x)#2/@x82x#2,1 for any two valuesx,x8 is that«2hx

2

,1 for all x. Therefore, the two conditions are equivalent.
the original nonscaled variables, this condition for conv
gence reads Max(uhxu),1. In conclusion, ifuhxu,1 in the
whole domain of integration, then the« expansion con-
verges. If the condition is not fulfilled in some intervals, th
Eq. ~3.6! is an asymptotic expansion. Even in this case,
expansion contains useful information about the origi
problem.

An interesting case isA50 that makes the vorticity inde
pendent ofUW in Eq. ~3.2! so that Eq.~3.5! becomes a closed
equation forh(x,t). Then, in Eq.~3.6! it is easy to show tha
Uŷ

(n)
50 whenn is even andUx̂

(n)
50 whenn is odd, a prop-

erty that makes the even power terms of the expansion in
~3.6! vanish.
01630
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B. First- and second-order expansion„«0 and «1
…

Following the scheme introduced in the previous secti
Eq. ~3.2! produces

Ux̂
(0)

50, Ux̂
(1)

5
1

2p
PE

2`

1`h~x8!2h~x!

~x2x8!2
g̃ (0)~x8!dx8,

~3.7!

Uŷ
(0)

5
1

2p
PE

2`

1`g̃ (0)~x8!

x2x8
dx8,

Uŷ
(1)

5
1

2p
PE

2`

1`g̃ (1)~x8!

x2x8
dx8. ~3.8!

Since g̃ (0)52Bkx
(0)12AUx̂

(0)
50 we get Ux̂

(1)
5Uŷ

(0)
50.

With this result we can study the first-order term in the vo
ticity equation,

g̃ (1)~x!52Bkx
(1)12hx12AUx̂

(1)
12AhxUŷ

(0) . ~3.9!

Taking into account the definition of the Hilbert transform

H@ f ~x8!#5
1

p
PE

2`

1` f ~x8!

x82x
dx8. ~3.10!

Equation~3.6! up to order«0 reads

dh

dt
52H@Bhx8x8x81hx8#. ~3.11!

The linear operatorF@h# in Eq. ~3.1! thus reads explicitly

F@h#5
1

p
PE

2`

1`~h1Bhx8x8!x8

x2x8
dx8. ~3.12!

Writing h(x,t) as a superposition of Fourier modes in E
~3.11! we recover the linear dispersion relation

ḋk~ t !

dk~ t !
5l~k!5uku~12Bk2!. ~3.13!

We will takek as an integer but we should bear in mind th
upon restoring dimensions,k should become (2p/L)n,
wheren is an integer.

Let us pursue the systematics of the method by compu
the next order in« in Eq. ~3.5!,

dh

dt
5Uŷ

(1)
1«Uŷ

(2)
5F@h#1«G@h#. ~3.14!

The computation ofUŷ
(2) requires an expression of the vo

ticity up to second order. This includes the evaluation
Ux̂

(2) , which must be computed from the first-order term
the vorticity. We get

Ux̂
(2)

5H@„h~x8! f ~x8!…x8#2h~x!H@ f x8~x8!#, ~3.15!
2-4
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with f (x)[(Bhxx1h)x5g̃ (1)(x)/2, and

Uŷ
(2)

5A$H†hx8H@ f ~x9!#‡1H†h~x8!H@ f x9~x9!#‡1~h f !x%.
~3.16!

Taking the Fourier transform, we obtain

ḋk5l~k!dk1«Auku (
s52`

1`

@12sgn~ks!#l~s!ds~ t !dk2s~ t !,

~3.17!

which coincides with the result of Miranda and Widom
Ref. @39#.

C. Third-order expansion „«2
…

The expansion to order«2 is necessary to account for th
lowest-order nonlinearities in the case of zero viscosity c
trast, and for other relevant situations such as the tim
dependent Saffman-Taylor finger solutions~Sec. III D!. We
now have

dh

dt
5O~«0!1O~«1!1«2~Uŷ

(3)
2hxUx̂

(2)
!1•••.

~3.18!

We have already computedUx̂
(2) in Eq. ~3.15!. On the other

hand

Uŷ
(3)

52
1

2
H@ g̃ (3)~x8!#

1
1

2p
PE

2`

1`@h~x8!2h~x!#2

~x82x!3
g̃ (1)~x8!dx8.

~3.19!

Integrating twice by parts, the last integral can also be w
ten as a Hilbert transform. After some algebra we obtain
explicit form of the operatorI @h# containing the cubic non
linearities in Eq.~3.1!, which reads

I @h#5
3

2
H@g~x8!#1

1

2
H†„f ~x8!@h~x!2h~x8!#2

…x8x8‡

2hxH†„f ~x8!@h~x8!2h~x!#…x8‡1V@h,A# ~3.20!

with

V@h,A#5A2H†h~x8!H@tx9~x9!#1hx8~x8!H@t~x9!#‡

1A2~ht!x , ~3.21!

and

g~x!5B~hxxhx
2!x , t~x!5Ux̂

(2)
1hxUŷ

(1)
5

g̃ (2)~x!

2A
.

~3.22!

The same result in Fourier space takes the form
01630
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ḋk~ t !5O~1,«!1«2 (
s,l 52`

1`

d lds2 ldk2sFA2T~k,s,l !

2
3

2
BY~k,s,l !1W~k,s,l !G , ~3.23!

with

T~k,s,l !5ukuusul~ l !@12sgn~ks!#@12sgn~ ls!#,
~3.24!

Y~k,s,l !5uku l 2~s2 l !~k2s!, ~3.25!

W~k,s,l !5F l S l

2
1k2sD2sksgn~ ls!1

k2

2
sgn~kl !Gl~ l !.

~3.26!

This result can be shown to be equivalent to that of Ref.@39#.
It is clear that the viscosity contrast in Eq.~3.23! is

squared because of the reflection symmetry~the simulta-
neous changeA→2A andh→2h is a dynamical symmetry
of the problem!. Symmetry reasons alone, however, do n
allow us to discard a three-mode-coupling contribution wh
A50. We see from our calculation that three-mode coupl
is indeed present independently ofA.

Following this scheme, the fourth order will carry a co
tribution proportional toA, and another proportional toA3,
for symmetry reasons. The fifth order will carry a contrib
tion independent ofA and two others, proportional toA2 and
A4, respectively. This scheme will continue for subsequ
orders. For further details on the reflection symmetry s
@39#.

D. Analysis of the time-dependent single-finger solution

In this section we perform a detailed analysis of t
weakly nonlinear expansion in cases where exact solut
are known, namely, single-finger configurations withB50.
This enables the study of how exact properties of soluti
show up at the different orders, particularly concerning
role of viscosity contrastA.

At this point it is worth recalling that the caseA51 al-
lows for a continuum of Saffman-Taylor finger solutions co
responding to different finger widths. A continuum of tim
dependent exact solutions, leading to those stationary st
is also known forA51. However, forA5” 1 only that of
width l5 1

2 remains a solution, wherel is the ratio of the
finger width to the width of the channel. This result, whic
has been recently addressed in Ref.@26# although it was first
discovered in Ref.@25#, shows an intriguing connection be
tween the width selection problem and the dynamical role
viscosity contrast. Here we will analyze the interplay b
tweenA andl in the early nonlinear regime and elucidate
what stage of the nonlinear dynamics does the viscosity c
trastA5” 1 prevent the possibility of havingl5” 1

2 .
From now on we considerL52p, B50, C51, and we

take (12l)C5(12l)[h/2 as scaling velocity . Conforma
mapping techniques enable us to write the single-finger
lution of this problem in the form@25,26#
2-5
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f ~w,t !52 ln w1d~ t !1h ln@12a~ t !w#, ~3.27!

where f (w,t)5y1 ix is an analytic function inside the un
disk in thew complex plane, which maps this disk onto th
physical region occupied by the more viscous fluid. The
terface is obtained in a parametric form by settingw5eiu.
The functionsa(t), d(t) verify

ḋ~ t !5
h

22h
Fh

2
2

ȧ~ t !

a~ t !
G , ~3.28!

ȧ~ t !

a~ t !
5

h

21h~h22!1h~22h!
11a2~ t !

12a2~ t !

. ~3.29!

To obtain an expression forh(x) in the weakly nonlinear
regime of the evolution,a(t) andd(t) are expanded in pow
ers of a small parametern,

d~ t !5d(0)~ t !1nd(1)~ t !1n2d(2)~ t !1•••, a~ t !5na (0)~ t !

1n2a (1)~ t !. ~3.30!

Introducing these expansions in Eqs.~3.28! and ~3.29! we
obtain

ḋ(0)5ḋ(1)50, ḋ(2)5
h3

2
~a (0)!2~ t !,

ḋ(3)5h3a (0)a (1), . . . , ~3.31!

ȧ (0)5
h

2
a (0), ȧ (1)5

h

2
a (1),

ȧ (2)5
h

2
@a (2)2h~22h!~a (0)!3#, . . . , ~3.32!

which will be useful later. From Eqs.~3.27! and ~3.28! we
obtain

y5h52nha (0)cosu2n2Fha (1)cosu1
h

2
~a (0)!2

3cos 2u2d(2)G2n3Fha (2)cosu1ha (0)a (1)cos 2u

1
h

3
~a (0)!3 cos 3u2d(3)G1O~n4!, ~3.33!

x52u2nha (0)sinu2n2Fha (1)sinu1
h

2
~a (0)!2 sin 2uG

1O~n3!. ~3.34!

This last equation can be inverted in a systematic way to
01630
-

et

u52x1nha (0)sinx1n2Fha (1)sinx1
h

2
~12h!

3~a (0)!2sin2xG1O~n3!. ~3.35!

Expanding the cosine functions in Eq.~3.33! we obtain the
following expression forh(x,t):

h~x,t !52nha (0)cosx2n2hFa (1)cosx

1
12h

2
~a (0)!2 cos 2xG

1n3hH ~h21!a (0)a (1)cos 2x

1F3h

8
~h22!~a (0)!32a (2)Gcosx

1F3h

8
~22h!2

1

3G~a (0)!3 cos 3xJ 1O~n4!.

~3.36!

In order to follow the scheme developed in the previo
section, we must measureh(x,t) in units of its characteristic
amplituden. In this way, the previous equation~3.36! takes
the form

h5h(0)1nh(1)1n2h(2)1O~n3!, ~3.37!

whereh(x,t) now representsh(x,t)/n, and the small param
etern is directly comparable to the small parameter« of the
previous section. The expression forh(x,t) can be regarded
as a series of modes of decreasing amplitude in our exp
sion~3.1! ~written in the units of this problem!, and matching
the corresponding powers in either« or n we obtain

dh(0)

dt
5

h

2
F@h(0)# ~3.38!

to order«0.
This identity can be verified~independently ofA) by sub-

stituting the expression forh(0) and using Eqs.~3.32! and
~3.11! for the left- and right-hand side, respectively. At ord
« we have

dh(1)

dt
5

h

2
~F@h(1)#1G@h(0),h(0)# !. ~3.39!

The second term of the right-hand side gives no contribut
and we obtain an interesting result: the equation at order« is
verified independently ofh andA. Hence, we cannot estab
lish the difference betweenA51 ~compatible with anyh)
andA5” 1 ~compatible only withh51) to this order.

The difference between these two situations arises at
der «2,
2-6
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dh(2)

dt
5

h

2
~F@h(2)#1G@h(0),h(1)#1L@h(0),h(0),h(0)# !.

~3.40!

Since the left-hand side of the equation involves only
modes cosx, cos 2x, and cos 3x, the right-hand side of the
equation must include these same modes with the same
efficients. The coefficients for cos 2x and cos 3x are easily
matched. For cosx the left-hand side reads

Fh3~h22!

16
~a (0)!32

h2

2
a (2)Gcosx, ~3.41!

where we have used Eq.~3.32!, and the right-hand side read

F3h3~h22!

16
~a (0)!32

h2

2
a (2)Gcosx

1A
h3~12h!

4
~a (0)!3 cosx1

h4

8
~a (0)!3 cosx.

~3.42!

Hence, the requirement for matching the coefficients on b
sides is

h3

4
~12h!5A

h3

4
~12h!, ~3.43!

which is always true ifh51 (l5 1
2 ), but forh5” 1 (lÞ 1

2 ) it
requiresA51. This result shows that the nontrivial relatio
ship betweenA andl, which is known from exact solutions
is already manifest at the early nonlinear stages of the
namics. This clearly illustrates the potential usefulness of
weakly nonlinear expansion at a purely analytical level,
that a dynamical property of the problem that must be sa
fied at all orders~in this case the incompatibility ofA5” 1 and
l5” 1

2 ) may be detected at a low order in the expansion w
out having to know the exact solution to all orders.

If we pursue the expansion to higher orders, the gen
expression forh(n) takes the form

h(n)5 (
k51

n11

bk
(n)~ t !cos~kx!, ~3.44!

where each coefficient is a function ofa(t). The even modes
of the solution withh51 have zero coefficients because th
must remain invariant under a change of sign and transla
by p.

So far in this section we have restricted ourselves toB
50 for comparison with exact results. However, we can a
carry out the analysis forB5” 0. It can be shown that the
structure of the expression~3.44! is preserved in this case
The coefficientsbk

(n)(t) are obtained as solutions of a set
differential equations that contain the surface tensionB. For
instance, to third order we have

h~x,t !5~b1
(0)1«b1

(1)1«2b1
(2)!cosx1~«b2

(1)

1«2b2
(2)!cos 2x1«2b3

(2)cos 3x, ~3.45!
01630
e

o-

th

y-
e

s-

-

al

n

o

which, introduced in Eq.~3.1!, leads to the following equa
tions:

ḃ1
(0)5V0~12B!b1

(0) , ḃ1
(1)5V0~12B!b1

(1) ,

ḃ2
(1)52V0~124B!b2

(1) , ḃ2
(2)52V0~124B!b2

(2) ,

ḃ3
(2)53V0~129B!b3

(2)2
9BV0

8
~b1

(0)!3,

ḃ1
(2)5V0~12B!b1

(2)1AV0~12B!b2
(1)b1

(0)

2
V0

8
~225B!~b1

(0)!3, ~3.46!

once the dimensions are reintroduced. In this way we
also see how surface tension perturbs the dynamics in
weakly nonlinear regime. Clearly, at these early stages of
nonlinear evolution there is no sign of the singular pertur
tion character of surface tension, which, during the la
stages of the evolution, will be responsible for the select
of the steady state@1#.

IV. NUMERICAL STUDY OF AN EXACT SOLUTION AND
ITS WEAKLY NONLINEAR APPROXIMATION

The purpose of this section is to put the weakly nonline
analysis to the test, as a quantitative approximation. We
check it against an exact time dependent solution of the c
B50 that evolves towards the Saffman-Taylor finger
width l5 1

2 in the channel geometry. This will allow us t
check how fast the convergence of the expansion is and
accurate it may be even beyond its radius of convergen
when it becomes an asymptotic series.

We defineF as the ratio between the maximum height
the interface~at the finger tip! and half the width of the cell
~in our caseL52p). F is a dimensionless amplitude, whic
is proportional to« and thus measures how deep the syst
is within the nonlinear regime. Furthermore, since the sys
is described by the evolution of a curve, it may also be c
venient to have a more global characterization of its confi
ration in order to compare the exact result and the differ
approximations. We propose the use of the fluxF, defined as
the total amount of fluid 1 per unit length and unit tim
flowing across the horizontal line located at the mean in
face position@18#.

A. The time-dependent exact solution withBÄ0 and lÄ 1
2

An explicit solution of the problem without surface ten
sion (B50) and valid for any viscosity contrastA, describ-
ing the growth of a single finger that asymptotically fills ha
of the channel (l5 1

2 ), can be obtained from Eqs.~3.27!,
~3.28!, and~3.29!. This reads

f ~w,t !52 ln w1Vot1a~0!

1 ln@A11$b~0!221%exp~2Vot !1w#, ~4.1!

with a(0) andb(0) as initial constants andb(0)@1. Since
this solution is valid for anyA, particularlyA50, all terms
2-7
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of the weakly nonlinear equation~3.1! depending onA will
necessarily have no contribution.

We will take the following values for the parameters:

Vo5
1

2
, b~0!5

1

n
51000, a~0!5 ln n1

n2

2
. ~4.2!

Figure 2 shows the evolution of the interface for this so
tion. WhenF.1 the finger shape is indistinguishable fro
the stationary Saffman-Taylor solution~Fig. 3!, except near
the pointsx5p/2 andx53p/2 when the asymptotes of th
finger must develop at infinite time. WhenF51/p, the slope
of the interface becomes 1 at these two points and the s
~3.1! loses its convergence, according to the discussion
Sec. III A.

In Fig. 4 we present the amplitude of the Fourier modes
the exact solution. It is clear that relatively few modes suffi
to accurately reproduce the stationary finger shape in the
region.

FIG. 2. Evolution of the interface at different values ofpF.

FIG. 3. Comparison of the exact solution@Eq. ~4.1!# at F51
~thin line! and the Saffman-Taylor stationary finger~thick line!.
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B. Expansion of the exact solution

In Sec. III D we expanded the exact solution~3.27! in a
small parametern. This expansion revealed a hierarchy
amplitudes of the different modes for an initial conditio
close to the planar interface. The solution~4.1! can be ex-
panded similarly and yields

n5
1

b~0!
, a~ t !52

n

b~ t !
, d~ t !5Vot1 ln b~ t !,

b~ t !5An21~12n2!exp~2Vot !. ~4.3!

In agreement with Eq.~3.36!, and using the same paramete
as in the previous section, we obtain up to third order,

h~x,t !5net/2 cosx1n3F S 1

2
et/22

1

8
e3t/2D cosx

2
1

24
e3t/2 cos 3xG . ~4.4!

The exact fluxF can be easily computed from the strea
function, which in turn can be related to the form of th
mapping equation~4.1! ~see, for instance, Ref.@18#!. In Figs.
5 and 6 we compare the fluxF of the approximate resul
above with the exact result coming from Eq.~4.1!. We
clearly observe that the first correction to the linear regi
improves the flux~to a 5% accuracy! from F.0.12 to F
.0.17. The amplitude of the modek51 ~Fig. 7! is fairly
well reproduced by the linear approximation up toF.0.20,
and the correction of ordern3 gives a value for the modek
53 that is reasonably good up toF.0.20 ~Fig. 8! and im-
proves the modek51 almost untilF.0.25. Above these
values ofF the deviation from the exact interface is exp
nential.

FIG. 4. Amplitude of the Fourier modes of the exact solution
consecutive values ofF.
2-8
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Notice that the expansion up ton3 considered here doe
not account for the complete three-mode coupling of E
~3.23! that contains part of the higher orders inn. This ex-
plains why going from ordern ~linear! to order n3 only
slightly improves the shape of the finger, the fluxF, and the
amplitude of the modek51.

C. Weakly nonlinear expansion

In this section we study the mode-coupling equat
~3.23!. We solve this equation in cases where only mod
k51 and k51,3 are present, and compare the result w
both the exact solution and the approximation to ordern3

introduced in the two previous sections.
We consider the initial conditionb1(0)5«50.001 for

the first mode and zero for the rest of the modes. We use

FIG. 5. Flux F as a function of the factor F for different ap
proximations~see text for details!.

FIG. 6. Relative error of the fluxF as a function of the factor F
for different approximations~see text for details!.
01630
.

s
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~3.23! recalling that, sinceb i represent the amplitudes of th
cosine functions,d i5b i /2. The result is that the modesk
Þ1 remain zero and Eq.~3.23! reduces to

ḃ15
1

2
b12

1

8
b1

3 , ~4.5!

which can be solved analytically and yields

b1~ t !5
«exp~0.5t !

A110.25«2@exp~ t !21#
, ~4.6!

where we see that the modek51 saturates to a finite valu
as t→`. Returning to Figs. 5 and 6, we see that the fluxF
approximates the exact value to within 5% untilF.0.23.

FIG. 7. The first-mode amplitude as a function of the factor
for different approximations~see text for details!.

FIG. 8. The third-mode amplitude as a function of the facto
for different approximations~see text for details!.
2-9
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Figure 7 shows that the amplitude of the first mode sta
deviating significantly from the exact solution aroundF
.0.40.

Next, we add the third mode to Eq.~3.23! with the initial
condition b15«13«3/8 and b35«3/24. The set of equa
tions to be solved numerically is

ḃ15
1

2
b12

1

8
b1

32
5

4
b3

2b11
1

4
b1

2b3 , ~4.7!

ḃ35
3

2
b32

3

4
b1

2b32
27

8
b3

3 . ~4.8!

As shown in Figs. 5 and 8 the flux does not improve sign
cantly, while the amplitude of the modek53 remains ac-
ceptable almost untilF.0.25, and improves the previou
result by more than 50% almost untilF.0.33. Beyond this
value ofF the third mode falls to zero due to the second te
on the right-hand side of Eq.~4.8!, proportional tob1

2b3 but
negative. This is a sign that higher-order terms, such as o
b1

4b3, become important whenb1 is of order one.
From this study we can conclude that using only tw

modes and the lowest-order nonlinear correction for this c
~involving three-mode couplings!, both the shape of the in
terface and the total flux are reasonably well describ
within the whole range of convergence of the series~up to
F.1/p). This indicates that the weakly nonlinear descr
tion of the problem works remarkably well at the quantitati
level, at least in some physically relevant cases. To w
extent this conclusion holds for more complicated situatio
for instance, those involving competition of different finge
remains an open question.

D. Partial resummation

According to Eq.~3.23!, we can write a closed equatio
for the modek51, which is correct up to third-order cou
plings, in the form

ḃ15
1

2
b12

1

4
b1

2ḃ1 , ~4.9!

where the modek53 has been initially set to zero.
This equation follows from Eq.~4.5! using the fact that

1
2 b15ḃ1 to first order.

The presence ofḃ1 on the right-hand side gives rise t
terms of order higher thanb1

3. Thus, solving this equation
amounts to doing a partial resummation of these higher-o
terms. This kind of closed differential equation was alrea
obtained in Ref.@39#. In our approach this differential equa
tion is obtained in a systematic way by identifying the ter
l(n)bn and replacing them withḃn . For example, in Eq.
~3.23! the termT(k,s,l ) could have been partially resum
mated in the two-mode coupling differential equation.

The solution of Eq.~4.9! yields the transcendental form

t52 lnS b1

« D1
1

4
~b1

22«2!. ~4.10!
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A numerical computation of the flux based on this equat
shows a dramatic improvement up toF.1/p ~See Fig. 5
where it is labeled as ‘‘Resummation,k51,’’ as in the other
figures!. It is surprising and remarkable that the equation
a single mode, including the resummation suggested by
first nonlinear correction, reproduces the exact solution t
great accuracy in the full range of convergence and defi
an excellent approximation further inside the nonlinear
gime. This suggests that this kind of resummation is
arbitrary and might have a deeper physical justification.

In addition, we obtain an amplitude for the modek51
within 10% accuracy up toF.0.8, and it is still quite accu-
rate untilF51. Although the exact spectrum shows the i
creasing importance of the modek53 at these values ofF,
the agreement between the exact result and this approx
tion for a single modek51 is quite remarkable.

We recall that the series converges up toF.1/p. Beyond
this value ofF, increasing the order of mode coupling in E
~4.9! does not guarantee that the approximation improv
Accordingly, there is an optimal finite order of approxim
tion for a given value of« as usual in asymptotic series. I
this sense, our results above seem to indicate that Eq.~4.9! is
the optimal approximation for the modek51 in the
asymptotic~nonconvergent! region~i.e., for moderately long
times!.

In the same spirit of Eq.~4.9!, we can also derive a close
system of differential equations, which includes third-ord
couplings for the modesk51,3 by replacingl(k)dk with ḋk
for the modesk51,3 in Eq.~3.23!. The system reads

ḃ15
1

2
b12

1

4
b1

2ḃ12b3
2ḃ12

1

2
b1b3ḃ31

1

2
b1b3ḃ1 ,

~4.11!

ḃ35
3

2
b32

3

2
b1b3ḃ12

9

4
b3

2ḃ3 . ~4.12!

Numerical solution ~referred to as ‘‘Resummation
k51,3’’ in the figures! of these equations shows no qualit
tive differences with the case of the single modek51, as far
as the flux and the amplitude of the first mode are concern
The improvement in the amplitude of the third mode a
consequently in the shape of the finger does not reach
high values ofF that the first mode reaches (F.0.8), as we
can see in Fig. 8. In a short range ofF the modek53 is
better than the case shown in the previous section, but d
ates from the exact solution much earlier than the modk
51 for the same reasons as in the previous section. Spe
cally the modek53 is extremely good untilF.0.25, starts
deviating by more than 10% atF.0.33, and is about 50% o
the value atF.0.40.

We conclude that the weakly nonlinear formalism, ap
from its nominal range of validity for very small amplitude
where it converges very fast to the exact dynamics, can
scribe regimes beyond those expected,a priori, with reason-
able accuracy. In the case of the growth of a single finger,
instance, we have explicitly seen that only two modes
gether with an appropriate partial resummation, yield a
2-10
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markably good approximation in the full range of conve
gence of the expansion (F,1/p).

V. CONCLUSION AND PERSPECTIVES

A systematic scheme to derive the successive order
mode couplings in a weakly nonlinear regime, adapted to
study of interfacial dynamics in Hele-Shaw flows has be
developed. In this paper we have applied the method to
channel geometry driven by gravity and pressure. T
method could also be applied to even more general~position-
dependent! driving. The formulation in real space has e
abled us to address the issue of convergence of the m
coupling expansion. We have found that the exact condi
for convergence in the channel geometry isuhxu,1 at every
point of the interface.

The explicit derivation of nonlinear couplings up to thi
order in the case of channel geometry has been done in o
to obtain the leading nonlinear contributions in cases wh
the second-order contribution vanishes. These include
case of zero viscosity contrast and the time-depend
single-finger solution of widthl5 1

2 .
On the analytical side, the usefulness of the weakly n

linear analysis in elucidating the role of the different para
eters on the dynamics, in some examples, has been de
strated. In the case of single-finger solutions growing in
channel, we have shown how an exact nontrivial property
the problem~the relationship betweenl and viscosity con-
trast A for zero surface tension! can be extracted from a
analysis order by order, without really knowing the exa
solution.

On the numerical side, the predictions of the weakly no
linear analysis, at different orders, against exact soluti
have been checked. We have found that the convergen
quite fast for small amplitudes. Furthermore, in the case
single finger growing in a channel we have explicitly se
C

tie

. A
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that the analysis of low orders~up to three-mode couplings!
yields a good description of the interface dynamics ev
close to the radius of convergence. With an appropriate
summation scheme, the prediction is relatively good ev
beyond this point.

Some of the most interesting applications of the syste
atic weakly nonlinear approach have not been develo
here since they deserve a separate, in-depth analysis.
first is the application of the present scheme to the ra
geometry with arbitrary injection and centrifugal driving
which includes the case of a rotating Hele-Shaw cell. T
analysis in this case presents a number of specific feat
and it has been performed explicitly up to second-order c
plings in @36#. A thorough discussion of this geometry, in
cluding the convergence analysis, will be presented in
forthcoming paper. Another possible interesting applicat
is the study of the scaling properties of fluctuations in sta
stratified Hele-Shaw flows with external noise@28#. Finally,
a more direct application of our formalism, which also d
serves a separate analysis, is the derivation of amplit
equations for the region near the instability threshold throu
a center manifold reduction. This would come under wha
most commonly referred to as the ‘‘weakly nonlinear’’ a
proach in the literature of pattern formation. A detailed stu
of this point with a careful discussion of the nature of t
bifurcation and its implications will be presented elsewhe
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