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Systematic weakly nonlinear analysis of interfacial instabilities in Hele-Shaw flows
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We develop a systematic method to derive all orders of mode couplings in a weakly nonlinear approach to
the dynamics of the interface between two immiscible viscous fluids in a Hele-Shaw cell. The method is
completely general: it applies to arbitrary geometry and driving. Here we apply it to the channel geometry
driven by gravity and pressure. The finite radius of convergence of the mode-coupling expansion is found.
Calculation up to third-order couplings is done, which is necessary to account for the time-dependent Saffman-
Taylor finger solution and the case of zero viscosity contrast. The explicit results provide relevant analytical
information about the role that the viscosity contrast and the surface tension play in the dynamics of the
system. We finally check the quantitative validity of different orders of approximation and a resummation
scheme against a physically relevant, exact time-dependent solution. The agreement between the low-order
approximations and the exact solution is excellent within the radius of convergence, and is even reasonably
good beyond this radius.
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[. INTRODUCTION situations near the instability threshold, where a separation of
scales is exploited. Instead, we expand on the amplitudes of
The morphological instability of fluid interfaces in Hele- the whole spectrum of modes.
Shaw flows[1,2] has become a paradigm of interfacial pat- In the traditional Saffman-Taylor problefohannel geom-
tern formation in nonequilibrium systeri3—5]. As opposed etry) the pressure- and gravity-driven instabilities can be for-
to the most commonly studied “bulk” pattern forming sys- mally mapped into each other in the appropriate reference
tems[6], the inherent difficulties of free-boundary problems frames, so there is really no different interface dynamics for
associated with interfacial growth makes the latter even moréhe two physical situations. The problem, then, contains two
elusive to analytical treatment. As a prototype of interfacialindependent dimensionless parameters, namely, a dimension-
instabilities in diffusion-limited growth problem@cluding,  less surface tensioB and the viscosity contrast or Atwood
for instance, dendritic growth, solidification of mixtures, ratio A[11]. In the radial geometry, though, there is no such
chemical electrodeposition, flame propagation, )ethhe formal mapping. The injection and the centrifugal forcing are
Saffman-Taylor problerfi7] is a relatively simple case, both not equivalent and three independent parameters must be
theoretically and experimentally, well suited for gaining in- considered.
sight into generic dynamical features in the broad context of The situation most commonly studied in the literature is
nonlinear interface phenomena. the high viscosity contrast limita= 1, where one of the two
The intrinsic difficulty of free-boundary problems is fluids is nonviscoug1] (typically air displacing a viscous
manifest in the fact that the interface dynamics is highlyfluid). The singular perturbation character of the surface ten-
nonlocal. Furthermore, the nature of the instabilgxcept in ~ sion B has received most of the attention as being respon-
some cases, such as in directional solidification of binanysible for the subtle mechanism afteady-state selection
alloys) usually produces nonsaturated growth, which inevitanamely, the fact that surface tension “selects” a single-
bly results in highly nonlinear dynamics. In bulk instabilities, finger solution out of a continuum of solutions f&=0
when the control parameter is near the threshold, the trad[12—14. More recently, the crucial role of surface tension in
tional weakly nonlinear techniques lead to a universal dethedynamicsof fingering patterns has been pointed out. Tan-
scription of patterns in terms of amplitude equations basedteer and co-worker$15-17 have shown that the exact,
on center manifold reductiof6,8]. These techniques, how- nonsingular time-dependent solutions known for the case
ever, are not so useful for interfacial problems in which non-with B=0 may differ significantly from the corresponding
linearities do not saturate the growth. This is the case, fosolutions withB—0™" after a time, which is of order one
instance, of viscous fingering. In the case of the channelB®). In practice, this implies that exact solutions of the
geometry(Saffman-Taylor problen1,7] the interface resta- problem withB=0 (including those with no finite time sin-
bilizes in a nontrivial morphologythe Saffman-Taylor fin- gularitie9 may lead to completely incorrect asymptotic be-
gen, which keeps growing at a finite rate. For circular geom-havior as compared to the regularized solutions Vi&ita 1.
etries[9,10] the patterns do not reach an equivalent steadyA careful analysis of these questions may be found in Ref.
state and the interplay of tip-splitting events and screening18]. Notice, however, that such an analysis is restricted to
effects may result in a variety of complicated morphologies.smallB, while in many casefor instance, for fingers emerg-
In these problems all the weakly nonlinear techniques applyng naturally from the linear instability, with the characteris-
only to a transient in the early nonlinear regime. Neverthetic length scale of the linearly most unstable mpttee ef-
less, compared to the more traditional op@$], the weakly fective dimensionless surface tension is necess&ilyl.
nonlinear analysis developed in this paper is not restricted ttnderstanding the dynamics of finger competition in typical
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experimental conditions thus requires considering relativelysis of the relevant terms and of the fixed points of the
large values o, for which the perturbative techniques of problem. This line of research is clearly beyond the scope of
[15-17 fail. this paper and will not be pursued here.

On the other hand, an important role of viscosity contrast The case of centrifugal forcing of Hele-Shaw floj29]
A in the dynamics of finger competition has been observedan also be addressed using our formulation. The experimen-
both numerically[11,19 and experimentally{f20-22. A  tal study of rotating Hele-Shaw flows has revealed a rich
careful characterization of the evolution of the interface hawariety of new phenomeng27,30,31. From a theoretical
shown that forA=0 the finger competition process is inef- point of view, new classes of exact solutions with-0 have
fective, and that the system does not approach the usugken found32,33. The role of rotation in the possible sup-
single-finger Saffman-Taylor attractf23,24. Although the  pression of finite time cusp singularities in the absence of
nature or existence of other attractors is still an open quessyrface tension has been discussef3#]. From an experi-
tion, it seems that the basin of attraction of the Saffmanmenta| point of VieW, important differences in pattern mor-
Taylor solution does depend @y and is particularly sensi- phology and new dynamical effects have been found for low
tive to Ain the neighborhood oA=1. In any case, itis clear ;scosity contrastg3s). It thus seems important to have this
that the viscosity contrast plays also a crucial role in thezase included in the weakly nonlinear formalism. The analy-
highly nonlinear regime, and that tunirgin its full range is &g pa5 already been carried §86] and will be discussed in
necessary to elucidate some of the important questions th%tail in a separate paper.
remain unanswered. The first weak i Ivsis of a Vi fi :

y nonlinear analysis of a viscous fingering

Fl'naIIy,. an mterestmg interplay betweéhandA incon- groblem was carried out by Guo, Hong, and Kurs@,38,
nection with the selection problem is apparent in that, despit . o ! .
who studied an intrinsically nonlinear, surface-tension-

the fact that single-finger stationary solutions of any width’, " : . o .
9 9 y y driven instability. The basic ideas developed here were intro-

do exist forB=0 regardless of viscosity contrast the only X . .
single-finger time-dependent solution of the=1 (B=0) duced l,)y M|lranda and Wldorf89,4(] for the standard vis-
{cous fingering problem both in channel and circular

problem, which is also a solution for any viscosity contras X H OO -
A, is the one that fills one half of the chanfi2b, 26, which geometry(with fluid injection). The present work is in part

is precisely the solution selected by surface tension in th@&n extension of those previous contributions in several direc-
limit B—0. Whether deeper consequences concerning théons, and in part a detailed study of selected particular situ-
selection problem can be drawn from this fact is also an opeftions to assess the validity and limitations of the approach.
question of considerable interest. First of all, we provide a fully systematic methodology
In order to gain analytical insight into these dynamicalthat may be carried out to arbitrary order. We apply this
questions we propose here a systematic weakly nonlinedechnique to derive an equation for the interface evolution in
expansion of the problem of viscous fingering in Hele-Shawreal space up to cubic nonlinearities. When this equation is
flows, applicable in all traditional setups and the most recenéxpressed in Fourier space it reproduces the second- and
one of rotating flowg27]. The basic reason is to be able to third-order mode couplings obtained by Miranda and Widom
extract information that is nonperturbative in any of the twoin Ref. [39]. These results are applied to the study of the
basic parameters, which are taken as completely arbitrangyolution of the Saffman-Taylor finger of width one-half—a
The expansion parameter will be basically the mode ampliconfiguration with up-down symmetry where the second or-
tudes. der is not present. It is implicit in our approach how further

In this paper we will focus on unstable stratified flows, for rqers can be computed due to the systematics of the
which the approach is necessarily restricted to the early evyethod.

lution of the interface. Although some of the nontrivial dy- | 4qdition. our study extends the earlier results of

namical effects mentioned above are associated with thg. - -4 Widonj39,40] with the discussion of the con-

highly nonlinear regime, it may be useful to know within a vergence of the weakly nonlinear analysis. We find the ex-
controlled approximation to what extent these or other ef-

. . glicit exact criterion to ensure uniform convergence of the
fects already show up in the early stages of nonlinear mode_ . : o . .
coupling. Series. Beyond this condition the series is asymptotic, and

For the stable stratified case the weakly nonlinear analysigmcerent resummatlon.sch.eme.f, are a}ISO explqred. The differ-
is obviously valid for long times since all mode amplitudes &Nt ©rders of approximation, including possible resumma-

decay with time. Although this configuration may seemtions, are carefully compared with exact solutions for the
trivial, this is not the case in some situations, for instancec@se of a single-finger configuration. We find that, in some
when some external source systematically drives the inte/Gases, agreement even at relatively low orders is quite re-
face out of its equilibrium state. An example of this is the markable.

presence of noise sources, such as the quenched noise assolhe layout of the rest of the paper is as follows. In Sec. II
ciated with a porous mediuri28]. In a study of the long- we introduce the formalism. Section Il deals with the deri-
wavelength, low-frequency scaling properties of the interfacevation of the weakly nonlinear equations and their applica-
fluctuations, knowledge of the lowest-order nonlinear termdion to Hele-Shaw flows in channel geometry. Section IV
and their dependence on parameters such as viscosity copresents a numerical analysis of exact and approximate so-
trast is crucial. In this context the weakly nonlinear expan-utions. The main results and conclusions are summarized in
sion is the starting point of any renormalization group analy-Sec. V.
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FIG. 1. Sketch of the Hele-Shaw cell in channel geometry.

Il. VORTEX SHEET FORMALISM
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y=2Dx,+2Ch,+2AU-(1,hy), (2.5
where
=yyJ1l+hi k= P (2.6
Y=Y ’ (1+ h)2()3/2 ’

The dependence dfandy on time is not written explicitly.
To complete the definition of the moving boundary prob-
lem the continuity of the normal velocity at the interface is
required. This means that the velocity in tlyedirection,
dh/dt, projected along the normal direction is equal to the
normal component of the average velocity of the interface,

u-n,

azU;—U;hx. (2.7

Let us first consider the Hele-Shaw problem in the chan-

nel geometry. We consider fluid (Yiscosity ., densityp,)
below fluid 2 (u,,p,) (Fig. 1). Thez axis is perpendicular
to the cell. A velocityV., is imposed at infinity in the§/
direction. Gravity points from fluid 2 to fluid 1. The width of
the cell isL, the gap between plates I and the surface
tension between the fluids is.

The equations of motion for the interface and the bound-

ary conditions are well knowf7]. Here we will use the
formulation of Tryggvason and Argfl1]. We introduce the

velocity U= (Jl+ Gz)/2 as the mean of the two limiting val-
ues of the velocities from both sides of the interfage, (i)

at a given point. This velocityj can be expressed in terms of
the vortex sheet distribution at the interface as

1 f ZX[r(s,t)—r(s’,t)]
—P
2

ven= F(s.0)—F(s D

y(s',t)ds',
(2.1

where

y=2A(U-8) + 2Cy-5+ 2D ko, (2.2

wheres is the arclengthg is the curvature, and

B gb*(p—p1)

A= M2 Mg _
12( ot p1)

Mot pg’

+AV,,

ob?

O Tt 23

y=(U;—Uy)-S.

In Sec. lll we will consider the interface in the comoving

frame CrT=0) and will look for the equation of evolution of
h(x,t).

Ill. SYSTEMATIC WEAKLY NONLINEAR ANALYSIS—
CHANNEL GEOMETRY

Our goal in this section is to introduce a systematic
method to derive an evolution equation of the interface in
real space, to a given order in nonlinear couplings in the
channel geometry. The different orders of mode couplings
will be ordered as powers of a “book-keeping” parameter
to be defined below. The evolution of the interface will thus
take the form

r =FIhI+eGlh]+e2I[h]+ -,

(3.9

whereF[h],G[h], etc. are nonlocal operators on the func-
tion h(x,t), including nonlinearities of orden+1 in the
term of ordere". The small parametes is defined as the
ratio of two lengthsg =w/L. We takew as a measure of the
characteristic scale of variation of the interfdde), while L

is either the width of the cell or, alternatively, the character-
istic scale of variation in th& direction. The weakly nonlin-
ear regime is defined by the conditien<L.

The ordere? in Eq. (3.1) corresponds to the linearized
equation. The ordet®, when written in Fourier space, cor-
responds to the result of Miranda and Wid¢8&9]. Here we
will perform the explicit calculation to one order higherdn
(up toI[h]), which is the leading nonlinear contribution in

For the purposes of this work it is convenient to rewrite theséseveral important cases, such as those discussed in Sec. IlI D.

equations in terms of the interface heidifx) following
[41]. The equations read

+ o

1
P

(h(x")=h(x),x—x") = x )X,

U(x,t)= e (x=x')2+[h(X')—h(x) ]2
2.4)

A. Dimensionless equations, expansion and convergence

We scale the interface height witl, the coordinatex
with L, and the time with./C, where the velocityC has been
defined in Eq(2.3).

The Eqgs.(2.4), (2.5), (2.6), and(2.7) become
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U(x.t) B. First- and second-order expansion(£° and &)
Following the scheme introduced in the previous section,
1 f+m (s[h(X)—h()],x=Xx)  ~ i Eq. (3.2 produces
_E . N , h(x,)_h(x) 2 )’(X ) X, o o 1 +°°h(X,)_h(X)~
(x=x)?*{ 1+e? ———— U, ’=0, U"=—P| ————=Ox")dx,
X —X 21 —» (X—X/)
3.2 (3.7
Y=2Bky+2eh,+2AU-(1,eh,), (3.3 o 1 YO
U.'=-—P dx’,
where Yo2m e x=x!
2 1 +oo~(1) N
B= ob L S uit=o- r ,)dx’. 3.8
12C L2 (py+ mp) (1+&%h})%? ToJme X=X
and Since ¥©=2B«{"+2AU"=0 we get U’=U!"=o0.
With this result we can study the first-order term in the vor-
dh 1 ticity equation,
EZEU)}—U;hX. (35)

YD(x)=2Bx{V+ 2h,+2AU +2AR UL (3.9
The starting point of our approach is an expansiomjof

v, and x in powers of¢. Notice that the term{h(x’)
—h(x)]?/[x’' —x]? between curly brackets in Eq3.2) is

Taking into account the definition of the Hilbert transform,

+ o0 !
bounded provided thdt, does not diverge. Equatiof3.5) H[f(x')]= EPJ f(x )dx’. (3.10
thus takes the form T S x =X
dh 1 Equation(3.6) up to orders® reads
—Zy@ Ly © (2 _ (O T
gt Yy U U e (U —h U + "
(36) a: - H[th/x/xl+hxr]. (311)

Before pursuing the calculation in detail, let us point out . . L
that thee expansion in Eq(3.6) has a finite radius of con- The linear operatoF[h] in Eq. (3.1) thus reads explicitly
vergence. This is guaranteed by the properties of uniform 1 [+=(h+Bhyy),
convergence of both the expansion of the inverse of the de- F[h]= _pf L T XXXy
nominator in Eq.(3.2 and the curvature. These properties ™
allow us to commute the expansion with the integral in Eq. N N ) )
(3.2 and vyield a convergent series of the fo6). The Writing h(x,t) as a superposition of Fourier modes in Eg.
radius of convergence of the expansion in Bj2) is given  (3.11) we recover the linear dispersion relation
by the conditions?[h(x’) —h(x)]%/[x’ —x]?<1, while the .
convergence of the curvature expansion is ensured by the M—)\(k)—|k|(l—8kz) (3.13
condition szh>2(<1. By virtue of the mean value theorem, a S(t) B ' )
necessary and sufficient condition fore?[h(x") _ _ o
—h(x)]¥[x’ —x]?<1 for any two valuex,x’ is thate2h? ~ We will takel_<as an integer but we should bear in mind that,
<1 for all x. Therefore, the two conditions are equivalent. InUpPOn restoring dimensionsk should become (&/L)n,
the original nonscaled variables, this condition for converWheren is an integer. _ .
gence reads Mafif,|)<1. In conclusion, iflh,]<1 in the Letus pursue the systematics of the method by computing
whole domain of integration, then the expansion con- the nextorder ire in Eq. (3.5,
verges. If the condition is not fulfilled in some intervals, then

X' (3.12

—oo X—X'

Eq. (3.6) is an asymptotic expansion. Even in this case, the @:Uﬁluguiz):p[h“se[h]_ (3.14
expansion contains useful information about the original dt v y
problem.

. 2 . .

An interesting case i8=0 that makes the vorticity inde- The computation 0U§,  requires an expression of the vor-
pendent olJ in Eq. (3.2 so that Eq(3.5) becomes a closed ticity up to second order. This includes the evaluation of
equation forh(x,t). Then, in Eq(3.6) it is easy to show that Uf(z), which must be computed from the first-order term of
Uﬁy"):O whenn is even andJ{" =0 whenn is odd, a prop-  the vorticity. We get

erty that makes the even power terms of the expansion in Eq. ) ) ) )
(3.6) vanish. U =HI(h(X) (X)) 1-hOIH[fe (X1, (3.19
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with f(x)=(Bhy,+h),=7"(x)/2, and

U= A{HIN HLF ) 11+ HINH Fo () 11+ ().

(3.1
Taking the Fourier transform, we obtain
+ oo
MK ac+eAlK| 2 [1-sgriks)IN(s) 54(1) S o(1),
(3.17

which coincides with the result of Miranda and Widom in
Ref.[39].

C. Third-order expansion (£?)

The expansion to order? is necessary to account for the

lowest-order nonlinearities in the case of zero viscosity cons
trast, and for other relevant situations such as the time-

dependent Saffman-Taylor finger solutiof®ec. 11l D). We
now have

h
r=0(e)+0(eh) +e2(U U+ - .
(3.19

We have already computéﬂif(z) in Eqg. (3.15. On the other
hand

u(f):—%H['&“)(x')]
#=[h(x") = h(x)]?

1 -
Pf M(x"dx'.
. I (x")

E (X

(3.19

Integrating twice by parts, the last integral can also be writ
ten as a Hilbert transform. After some algebra we obtain th

explicit form of the operatot[ h] containing the cubic non-
linearities in Eq.(3.1), which reads

I[h]= gH[g(X’)H%H[(f(X’)[h(X)— h(X") 1)y
—hH[(F(x")[h(x") =h(x) D 1+ V[h,A] (3.20
with
VLh,A]=AH[h(X" )H[ 7,0(X") ]+ hr (X YH 7(x") 1]
+A%(h7),, (3.2)
and

Y3(x)
2A
(3.22

The same result in Fourier space takes the form

9(x) =B(hyhd), 7(x)=U+hull=

PHYSICAL REVIEW E 64 016302

—+ oo

8(1)=0(1e)+e? l_Eq 5 5s_|6k_S[A2T(k,s,l)

—gBY(k,SJ)‘f‘W(k,S,') , (3.23
with
T(k,s.1)=[Kl|s|x(1)[1—sgriks)[[1—sgr(ls)],
(3.29
Y(k,s,1)=k[1?(s—1)(k—s), (3.2

2
—sksgnls)+ k?sgr(kl)}k(l).

(3.2

his result can be shown to be equivalent to that of 4.

It is clear that the viscosity contrast in E¢B.23 is
squared because of the reflection symmdthe simulta-
neous chang®— — A andh— —h is a dynamical symmetry
of the problem. Symmetry reasons alone, however, do not
allow us to discard a three-mode-coupling contribution when
A=0. We see from our calculation that three-mode coupling
is indeed present independently Af

Following this scheme, the fourth order will carry a con-
tribution proportional toA, and another proportional &%,
for symmetry reasons. The fifth order will carry a contribu-
tion independent oA and two others, proportional #? and
A%, respectively. This scheme will continue for subsequent
orders. For further details on the reflection symmetry see
[39].

W(k,s,|)=[|

I
E'f‘k_S)

D. Analysis of the time-dependent single-finger solution

In this section we perform a detailed analysis of the
weakly nonlinear expansion in cases where exact solutions
‘are known, namely, single-finger configurations Wik 0.
his enables the study of how exact properties of solutions
show up at the different orders, particularly concerning the
role of viscosity contrasA.

At this point it is worth recalling that the cage=1 al-
lows for a continuum of Saffman-Taylor finger solutions cor-
responding to different finger widths. A continuum of time-
dependent exact solutions, leading to those stationary states,
is also known forA=1. However, forA#+1 only that of
width A =3 remains a solution, wher is the ratio of the
finger width to the width of the channel. This result, which
has been recently addressed in R26] although it was first
discovered in Ref[25], shows an intriguing connection be-
tween the width selection problem and the dynamical role of
viscosity contrast. Here we will analyze the interplay be-
tweenA andA in the early nonlinear regime and elucidate at
what stage of the nonlinear dynamics does the viscosity con-
trastA# 1 prevent the possibility of having+ 3.

From now on we considdr=27, B=0, C=1, and we
take (1-\)C=(1—\)= /2 as scaling velocity . Conformal
mapping techniques enable us to write the single-finger so-
lution of this problem in the forni25,26

016302-5
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f(w,t)=—Inw+d(t)+ 7In[1—a(t)w], (3.27

wheref(w,t)=y+ix is an analytic function inside the unit
disk in thew complex plane, which maps this disk onto the
physical region occupied by the more viscous fluid. The in-

terface is obtained in a parametric form by settimgr e'’.
The functionsa(t), d(t) verify

. a(t

d(t):%] g—% , (3.28
a(t) U
alt) 1+aX(t) (3.29

2 —2)+p(2— ) ——5—
+n(n=2)+n( n)l_az(t)

To obtain an expression fdn(x) in the weakly nonlinear
regime of the evolutiong(t) andd(t) are expanded in pow-
ers of a small parameter,
d(t)=dOt)+ vdD(t) + v2d@(t)+ - - -, a(t)=va (1)
+v2aM(t). (3.30
Introducing these expansions in Ed8.28 and (3.29 we
obtain

3
4O=gW=p, d(2):777(a(0))2(t),

d®=53a@aM), (3.3
. n . n
©=7,0 0=
o 2a , 2a ,
= @ o0 ()3 3.3
dD=2[a®= 2= (@), ..., (332

which will be useful later. From Eqg$3.27 and (3.28 we
obtain

y=h=—v7na®@cosf—1? 7]6((1)00504‘;(&(0))2

x cos 20— d@| — 13| paPcosh+ na'VaMcos 26

+0(vh), (3.33

+ g(a(o))3 cos 3—d®

x=—0—vna'%sin— 12 paVsin o+ g(a(o))2 sin 26

+0(13). (3.39

PHYSICAL REVIEW E 64 016302

6= —x+ vypaQsinx+ v?

na®sinx+ g(l— 7)

X (a(®)2sin2x |+ O(v3). (3.35

Expanding the cosine functions in E@.33 we obtain the
following expression foh(x,t):

h(x,t)= — vpaDcosx— 1?7 aPcosx

1—
+ Tn(a(o))2 cos X
+ V377: (7—1)a@aMcos X

COSX

3
+[?ﬂ(77—2)(a(°))3—a(2)

1
+ ?7’(2— 7 —5|(@®)% cos x| +0(+.

(3.36

In order to follow the scheme developed in the previous
section, we must measuh€x,t) in units of its characteristic
amplitudev. In this way, the previous equatidB.36) takes
the form

h=h©@+ phM+ 12h)+ O (1), (3.37
whereh(x,t) now representl(x,t)/v, and the small param-
eterv is directly comparable to the small parameteof the
previous section. The expression fufx,t) can be regarded
as a series of modes of decreasing amplitude in our expan-
sion(3.1) (written in the units of this problejmand matching
the corresponding powers in eitheror v we obtain

dh©®
dt

— JFh) (3.38

to ordere®.

This identity can be verifiedindependently of\) by sub-
stituting the expression foh(®) and using Eqs(3.32 and
(3.19) for the left- and right-hand side, respectively. At order
e we have

dh®)
dt

_ g(F[h<1>]+G[h<0>,h<°>]). (3.39

The second term of the right-hand side gives no contribution
and we obtain an interesting result: the equation at asdsr
verified independently of; andA. Hence, we cannot estab-
lish the difference betweeA=1 (compatible with anyz)
andA+ 1 (compatible only withp=1) to this order.

The difference between these two situations arises at or-

This last equation can be inverted in a systematic way to geter €2,
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dh® which, introduced in Eq(3.1), leads to the following equa-

= 5 (FIN@1+ GIh@,h W]+ L[N, A hO]).  tions:
3.4 - -
(340 BO=Vo(1-B)BY, BYI=Vo(1-B)AL,
Since the left-hand side of the equation involves only the - 0 o 5
modes cog, cos X, and cos &, the right-hand side of the N=2vy(1-4B)pS, BP=2vy(1-4B)B%,

equation must include these same modes with the same co-

efficients. The coefficients for cosand cos g are easily - 2)_ B @ 9BVo 0y3
matched. For costhe left-hand side reads BST=3Vo(1-9B) By g (A1)
7(n—2) U 52— ) (1) 5(0)
T(Q(O))3_7a(2) CcosX, (3.41) 1°=Vo(1-B)Bi"+AVo(1-B)B; b1
_%5_ (0),3
where we have used E(B.32, and the right-hand side reads 38 (2=5B)(B1")", (349

once the dimensions are reintroduced. In this way we can

also see how surface tension perturbs the dynamics in the

weakly nonlinear regime. Clearly, at these early stages of the

nonlinear evolution there is no sign of the singular perturba-

tion character of surface tension, which, during the later

(3.42) stages of the evolution, will be responsible for the selection
' of the steady statfl].

Hence, the requirement for matching the coefficients on both

sides is IV. NUMERICAL STUDY OF AN EXACT SOLUTION AND

ITS WEAKLY NONLINEAR APPROXIMATION

3 B 2
[M(aw))a_ - a® cosx

16

4

7
cosx+§(a(°))3 COSX.

3
1_
NI O

3 3
7]—(1— 77)=A7]—(1— 7), (3.43 The purpose of this section is to put the weakly nonlinear
4 4 analysis to the test, as a quantitative approximation. We will
check it against an exact time dependent solution of the case
requiresA=1. This result shows that the nontrivial relation- B.:O thftl gvolves towards the Saffmqn-Tgylor finger of
width A =3 in the channel geometry. This will allow us to

ship betweerA and\, which is known from exact solutions, S
. . ; check how fast the convergence of the expansion is and how
is already manifest at the early nonlinear stages of the dy: . . :
. . ) ! accurate it may be even beyond its radius of convergence,
namics. This clearly illustrates the potential usefulness of the . . ;
. : . . When it becomes an asymptotic series.
weakly nonlinear expansion at a purely analytical level, in

that a dynamical property of the problem that must be satis, We defineF as the ratio between the maximum height of
fied at all ordersin this case the incompatibility g+ 1 and the interfacgat the finger tip and half the width of the cell

N\ #3) may be detected at a low order in the expansion with-.(In our casd. =27). F is a dimensionless amplitude, which

out having to know the exact solution to all orders. is proportional toe and thus measures how deep the system

) ) is within the nonlinear regime. Furthermore, since the system
If we pursue the expansion to higher orders, the general . : .
. ) IS described by the evolution of a curve, it may also be con-
expression foh'"™ takes the form

venient to have a more global characterization of its configu-
n+1 ration in order to compare the exact result and the different

h(n = 2 [gf(n)(t)cog( kx), (3.44) approximations. We propose the use of the fluxdefined as
k=1 the total amount of fluid 1 per unit length and unit time

which is always true ifp=1 (A=3%), butforp#1 (\#3) it

. . . flowing across the horizontal line located at the mean inter-
where each coefficient is a function @ft). The even modes 5.6 positior| 18].

of the solution withn= 1 have zero coefficients because they
Lnust remain invariant under a change of sign and translation o e time-dependent exact solution withB=0 and A =1
y . - : .

So far in this section we have restricted ourselve®to  An explicit solution of the problem without surface ten-
—0 for comparison with exact results. However, we can alsgion (B=0) and valid for any viscosity contrag{ describ-
carry out the analysis foB#0. It can be shown that the N9 the growth of a fmgle finger that_ asymptotically fills half
structure of the expressiof8.44 is preserved in this case. Of the channel X=3), can be obtained from Eq$3.27),
The coefficients3{"(t) are obtained as solutions of a set of (3-28, and(3.29. This reads
differential equations that contain the surface ten®ofror f(w,t) = —Inw+V,t+a(0)
instance, to third order we have ’ ©

) = (804 £ B0+ 5250 cosx + (s 50 +In[y1+{b(0)?>—1}exp 2V, t)+w], (4.1)

2 () 2 () with a(0) andb(0) as initial constants ank(0)>1. Since
+t&°B;7)cos X+e°By cos X, (345 this solution is valid for amy, particularly A=0, all terms
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4 5r
¢ " F=0.13
4t e  F=0.30
2 v A  F=0.43
+  F=057
sl * X F=0.73
= ° * F=0.89
= 0 E: x v F=1.03
= * F=121
g 2F +
3
-2 s A
1F e .
v
E3
-4 ] % k4
0 n/2 n 3/2 2n o ni-%u*-‘-i
X 1 . 1 . 1 . 1 . 1 . !
1 3 5 7 9 11
FIG. 2. Evolution of the interface at different valuesoF. K
of the weakly nonlinear equatio3.1) depending orA will FIG. 4. Amplitude of the Fourier modes of the exact solution at
necessarily have no contribution. consecutive values df.
We will take the following values for the parameters:
5 B. Expansion of the exact solution
1 1 v . .
V,==, b(0)===1000, a(0)=Inv+—=. (4.2 In Sec. 1lID we expanded the exact soluti@27) in a
2 v 2 small parametew. This expansion revealed a hierarchy of

amplitudes of the different modes for an initial condition
close to the planar interface. The solutighl) can be ex-
panded similarly and yields

Figure 2 shows the evolution of the interface for this solu-
tion. WhenF =1 the finger shape is indistinguishable from
the stationary Saffman-Taylor solutigkig. 3), except near
the pointsx= 7/2 andx=3#/2 when the asymptotes of the 1 "
finger must develop at infinite time. Whén= 1/4r, the slope v= W a(t)y=— W d(t)=V,t+Inb(t),
of the interface becomes 1 at these two points and the series
(3.1) loses its convergence, according to the discussion of
Sec. llIA. b(t)=v"+(1—v*)exp2V,t). 4.3

In Fig. 4 we present the amplitude of the Fourier modes of
the exact solution. It is clear that relatively few modes sufficein agreement with Eq.3.36), and using the same parameters
to accurately reproduce the stationary finger shape in the tigs in the previous section, we obtain up to third order,
region.

1
4 [ h(x,t) = ve?cosx+ v° Ee"z— §e3“2) COSX
3 -
[ - ieg'“2 cos X (4.9
2r 24 ' '
1}
The exact fluxd® can be easily computed from the stream
Z ol function, which in turn can be related to the form of the
= mapping equatio.1) (see, for instance, Rdf18]). In Figs.

AF 5 and 6 we compare the fluk of the approximate result
" above with the exact result coming from E(.1). We

2 clearly observe that the first correction to the linear regime
| / AN improves the flux(to a 5% accuragyfrom F=0.12 toF
- S =0.17. The amplitude of the mode=1 (Fig. 7) is fairly
4 ! \ well reproduced by the linear approximation upRe-0.20,
0 2 . 35/0 on and the correction of order® gives a value for the mode

=3 that is reasonably good up E©=0.20 (Fig. 8 and im-
proves the modé&k=1 almost untilF=0.25. Above these

FIG. 3. Comparison of the exact solutipgq. (4.1)] at F=1  values ofF the deviation from the exact interface is expo-
(thin line) and the Saffman-Taylor stationary fingghick line). nential.

X
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15 Exact 40 Linear
Linear l \ Exact
\ 35} \
12} Resummation, k=1 Resummation, k=1,3
30} i
Resummation, k=1,3 Resummation, k=1
Yost
0.9 o
Weakly nonlinear, k=1,3 3
Eoo}t
=] 5 %
Weakly nonlinear, k=1 o
06 s ;
- / % 15k Weakly nonlinear, k=1
E
10} Weakly nonlinear, k=1,3
03 /
™~ Order v’ 05F
Order v*
0.0 1 1 1 1 ) 0.0 1 1 1 1 )
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
F F
FIG. 5. Flux® as a function of the factor F for different ap- FIG. 7. The first-mode amplitude as a function of the factor F
proximations(see text for details for different approximationgsee text for details

Notice that the expansion up 0 considered here does (3.23 recalling that, sincgs; represent the amplitudes of the
not account for the complete three-mode coupling of Eqcosine functionss,=B;/2. The result is that the modds
(3.23 that contains part of the higher ordersiinThis ex- 1 remain zero and Eq3.23 reduces to
plains why going from ordew (linean to order »* only

slightly improves the shape of the finger, the flix and the 3 _}B 3 },83 @5
amplitude of the mod&=1. 1Pl ght '
C. Weakly nonlinear expansion which can be solved analytically and yields

In this section we study the mode-coupling equation
(3.23. We solve this equation in cases where only modes Ba(t) = eexp(0.3t)
k=1 andk=1,3 are present, and compare the result with ! J1+0.25%expt)—1]
both the exact solution and the approximation to org&r
introduced in the two previous sections.

We consider the initial condition8,(0)=¢=0.001 for
the first mode and zero for the rest of the modes. We use E

(4.6

where we see that the mo#te=1 saturates to a finite value
ast—oo, Returning to Figs. 5 and 6, we see that the fiux
%‘pproximates the exact value to within 5% urfit=0.23.

50r Weakly nonlinear, k=1,3
Weakly nonlinear, k=1 0.00

40 - -0.05
S © _
= ii -0.10 | Resummation, k=1,3
e 30 F x~
.= . [
o Linear g
o £
] 5 -0.15 |
[0 [0
2 - °
2 20 3
& £ 0.20

< U 3
Resummation, k=1 Order v
10
0251 Exact
~—— Convergence limit: F=1/n
0 1 i 1 n 1 2 1 i 1 -0 30 1 ' )
00 0z 04 06 08 10 “o0 02 04 06 08 10
F F
FIG. 6. Relative error of the flu$p as a function of the factor F FIG. 8. The third-mode amplitude as a function of the factor F
for different approximationgsee text for details for different approximationgsee text for details
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Figure 7 shows that the amplitude of the first mode start®\ numerical computation of the flux based on this equation

deviating significantly from the exact solution arouid
=0.40.

Next, we add the third mode to E(B.23 with the initial
condition B;=&+3¢%8 and B;=¢%/24. The set of equa-
tions to be solved numerically is

11,5, 1,
B12531_551_2B3,31+Z/31,33: 4.7

3 3, 27 .
B3=5PBa~ 7 B1Bs~ 5 b3 (4.9

As shown in Figs. 5 and 8 the flux does not improve signifi-
cantly, while the amplitude of the mode=3 remains ac-
ceptable almost untiF=0.25, and improves the previous
result by more than 50% almost unkil=0.33. Beyond this
value ofF the third mode falls to zero due to the second ter
on the right-hand side of E@4.8), proportional toB33; but
negative. This is a sign that higher-order terms, such as ord
,8‘1‘;33, become important wheg, is of order one.

From this study we can conclude that using only two
modes and the lowest-order nonlinear correction for this ca
(involving three-mode couplingsboth the shape of the in-
terface and the total flux are reasonably well describe
within the whole range of convergence of the sefigs to

m

shows a dramatic improvement up Fo=1/7w (See Fig. 5
where it is labeled as “Resummatidks=1,"” as in the other
figures. It is surprising and remarkable that the equation for
a single mode, including the resummation suggested by the
first nonlinear correction, reproduces the exact solution to a
great accuracy in the full range of convergence and defines
an excellent approximation further inside the nonlinear re-
gime. This suggests that this kind of resummation is not
arbitrary and might have a deeper physical justification.

In addition, we obtain an amplitude for the moke 1
within 10% accuracy up t&=0.8, and it is still quite accu-
rate untilF=1. Although the exact spectrum shows the in-
creasing importance of the modte= 3 at these values @,
the agreement between the exact result and this approxima-
tion for a single modé&=1 is quite remarkable.

We recall that the series converges ug-te 1/7r. Beyond
his value ofF, increasing the order of mode coupling in Eq.
(4.9 does not guarantee that the approximation improves.
Accordingly, there is an optimal finite order of approxima-

t

1 . . . .
Slon for a given value ot as usual in asymptotic series. In

this sense, our results above seem to indicate thaf4E9).is
the optimal approximation for the mod&=1 in the

Sgsymptotic(nonconverger)tregion(i.e., for moderately long

éim

es.
In the same spirit of Eq4.9), we can also derive a closed
system of differential equations, which includes third-order

F=1/m). This indicates that the weakly nonlinear descrip- , o . .
tion of the problem works remarkably well at the quantitativeCOUpIIngS for th_e mo<_jels- 1,3 by replacing\ (k) & with &
level, at least in some physically relevant cases. To whatOf the modesk=1,3 in Eq.(3.23. The system reads
extent this conclusion holds for more complicated situations,

for instance, those involving competition of different fingers, : zl _ E 20 2 E Bt E :
remains an open question. Pr=5B1= g BiPr= BiBr— 5 P1BsBst 5 B1Psbi,
(4.11
D. Partial resummation

According to Eq.(3.'23),.we can write a clgsed equation 1233:;33_ ;31133,31_ gﬁ%ﬁs- (4.12
for the modek=1, which is correct up to third-order cou-
plings, in the form

Numerical solution (referred to as “Resummation,

k=1,3" in the figures of these equations shows no qualita-
tive differences with the case of the single magel, as far

as the flux and the amplitude of the first mode are concerned.
The improvement in the amplitude of the third mode and
consequently in the shape of the finger does not reach the
high values ofF that the first mode reacheE£0.8), as we

can see in Fig. 8. In a short range Bfthe modek=3 is

i The prresdenCﬁ-of ! ciﬂ th? r_lrghht-hanclj ;ldethglves rlst_e ' petter than the case shown in the previous section, but devi-
erms of order higher thapy. Thus, solving this equation o4.q from the exact solution much earlier than the miode

amounts to doing a partial resummation of these higher-order 1 for the same reasons as in the previous section. Specifi-

. . A X ally the modek=3 is extremely good untiF=0.25, starts
obtained in Ref[39]. In our approach this differential equa- deviating by more than 10% &=~0.33, and is about 50% of
tion is obtained in a systematic way by identifying the terms '

_ T ) the value at=0.40.
A(n) B, and replacing them wittg,,. For example, in Eg. We conclude that the weakly nonlinear formalism, apart

(3.23 the termT(k,s,l) could have been partially resum- from its nominal range of validity for very small amplitudes
mated in the two-mode coupling differential equation. where it converges very fast to the exact dynamics, can de-
The solution of Eq(4.9) yields the transcendental form  scripe regimes beyond those expectegyiori, with reason-
able accuracy. In the case of the growth of a single finger, for
instance, we have explicitly seen that only two modes to-
gether with an appropriate partial resummation, yield a re-

.1 1,
B1=5B1~ 7 B1b, (4.9
where the mod&=3 has been initially set to zero.

This equation follows from Eq(4.5) using the fact that

18,=p3, to first order.

terms. This kind of closed differential equation was alreadyC

B1

=21 Lo 4.1
t= n?+l—1(,6’1 g%). (Q
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markably good approximation in the full range of conver-that the analysis of low ordefsip to three-mode couplings

gence of the expansio-& 1/7). yields a good description of the interface dynamics even
close to the radius of convergence. With an appropriate re-
V. CONCLUSION AND PERSPECTIVES summation scheme, the prediction is relatively good even

) . ) beyond this point.

A systematic scheme to derive the successive orders of 5gme of the most interesting applications of the system-
mode couplings in a weakly nonlinear regime, adapted to th@tjc weakly nonlinear approach have not been developed
study of interfacial dynamics in Hele-Shaw flows has beemere since they deserve a separate, in-depth analysis. The
developed. In this paper we have applied the method to thgst is the application of the present scheme to the radial
channel geometry driven by gravity and pressure. Thgeometry with arbitrary injection and centrifugal driving,
method could also be applied to even more genf@@dition-  \yhich includes the case of a rotating Hele-Shaw cell. The
dependentdriving. The formulation in real space has en- gnalysis in this case presents a number of specific features
abled us to address the issue of convergence of the modgn( it has been performed explicitly up to second-order cou-
coupling expansion. We have found that the exact conditiorb”ngs in[36]. A thorough discussion of this geometry, in-
for convergence in the channel geometrytig <1 at every  cluding the convergence analysis, will be presented in a
point of the interface. _ _ _forthcoming paper. Another possible interesting application

The explicit derivation of nonlinear couplings up to third js the study of the scaling properties of fluctuations in stable
order in the case of channel geometry has been done in ordgfratified Hele-Shaw flows with external noigzg]. Finally,
to obtain the leading nonlinear contributions in cases wherg more direct application of our formalism, which also de-
the second-order contribution vanishes. These include thgerves a Separate ana'ysiS, is the derivation of amplitude
case of zero viscosity contrast and the time-dependeriquations for the region near the instability threshold through
single-finger solution of width = 3. a center manifold reduction. This would come under what is

On the analytical Side, the usefulness of the Weakly NONmMoEst Comm0n|y referred to as the “Weak|y nonlinear” ap-
linear analysis in elucidating the role of the different param-proach in the literature of pattern formation. A detailed study
eters on the dynamics, in some examples, has been demag¥ this point with a careful discussion of the nature of the

strated. In the case of single-finger solutions growing in &jfurcation and its implications will be presented elsewhere.
channel, we have shown how an exact nontrivial property of

the problem(the relationship _between and viscosity con- ACKNOWLEDGMENTS
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